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Abstract—We consider the biorthogonal Cohen–Daubechies–
Feauveau (CDF) wavelet family in the context of a biorthogonal
multiresolution time-domain (bi-MRTD) analysis. A disadvantage
of previous bi-MRTD analyses is an inability to handle abrupt
changes in material properties, particularly for a perfect electric
conductor (PEC). A multiregion method is proposed to address
PEC targets. The proposed method is based on the fact that the
CDF bi-MRTD may be viewed as a linear combination of several
conventional finite-difference time-domain (FDTD) solutions.
The implementation of the connecting surface is also simplified.
Several numerical results are presented, with comparison to
analytic and FDTD results.

Index Terms—Numerical methods, time domain, wavelets.

I. INTRODUCTION

THE finite-difference time-domain (FDTD) method has
been widely used in the field of computational electro-

magnetics due to its simple implementation and a capability
to address complex targets [1]–[3]. From the viewpoint of
the moment method, the conventional FDTD is based on a
rectangular-pulse field expansion [4]. Poor FDTD numerical
dispersion properties are inevitable due to the discontinuous
basis functions. As a result, field components have to be over-
sampled to obtain numerical results with reasonable accuracy.
This requirement becomes computationally expensive for
electrically large targets.

The multiresolution time-domain (MRTD) method has been
proposed recently to improve numerical-dispersion properties
[4]–[10]. In the MRTD, wavelet-based basis functions are used
spatially, rather than rectangular pulses. Numerical results have
shown that much better numerical-dispersion properties are ob-
tained by employing continuous wavelet functions, such as the
orthonormal Battle–Lamarie wavelet family [4], [5]. However,
this wavelet family is of infinite support spatially and, therefore,
basis-function truncation is required in a numerical implemen-
tation [4].

To circumvent this, one may use basis functions that are
smooth while simultaneously being of compact (finite) support.
The Daubechies wavelet family is smooth, orthonormal, and
has compact support [11], [12]. An analogous biorthogonal
wavelet family developed by Cohen–Daubechies–Feauveau
(CDF) [13] has the same properties of smoothness and compact
support, while also being symmetric. Biorthogonal multireso-
lution time domain (bi-MRTD) denotes the MRTD based on
the biorthogonal CDF wavelet family [14]–[16]. Numerical
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examples in [16] demonstrate excellent numerical accuracy
with a relatively simple implementation (comparable to the
MRTD with other wavelet families [4]).

Most previous MRTD scattering results have been for dielec-
tric targets [4]–[10], [14]–[16]. There are significant compli-
cations for the case of targets composed of a perfect electric
conductor (PEC). In particular, the principal advantage of the
MRTD with smooth basis functions is found in the reduced
spatial-sampling requirements. This results in both CPU and
memory savings [4], [5], [14]–[16]. However, this reduced spa-
tial-sampling rate also implies that the basis functions are of
extended support spatially, complicating enforcement of local-
ized PEC boundary conditions. In this paper, we develop a new
formalism by which the bi-MRTD algorithm may be extended
to the case of PEC targets. We demonstrate results for isolated
PEC targets, as well as PEC-dielectric composite targets.

The remainder of this paper is organized as follows. The
bi-MRTD is reviewed briefly in Section II, and a numerical
example is presented to show its difficulty in handling PEC
targets. In Section III, we propose a new multiregion bi-MRTD
implementation to address PEC targets. Numerical results are
given in Section IV to show the validity and accuracy of the
method, followed by conclusions in Section V.

II. BRIEF REVIEW OF THE bi-MRTD

In the view of the moment method [17], the conventional
FDTD is based on a rectangular-pulse field expansion in space
and time [4]. Similarly, any electric- or magnetic-field compo-
nent for a three-dimensional problem may be expanded in terms
of the duals of the scaling and wavelet functions in the -, -,
and -directions constituting the bi-MRTD scheme [14], [15].
Here, we perform a biorthogonal wavelet expansion in space,
while retaining the pulse expansion in time.

Without loss of generality, we consider the bi-MRTD imple-
mentation with scaling functions alone since the greatest com-
putational savings were found by using such a scheme [15], al-
though it is a single-resolution approach. By adding a level of
wavelets (not shown here to simplify the presentation), we ob-
tain the full multiresolution formalism [14], [15]. Under these
assumptions, two typical field update equations, in Cartesian co-
ordinates, may be written as

(1a)
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(1b)

where the indexes , , and denote the discrete-space indexes,
and denotes the time index. The parameter is the stencil
size, which is equal to half the number of the nonzero coeffi-
cients . These are determined by the scaling function and
its dual as follows:

(2)

The other coefficients are defined as in a conventional FDTD
analysis, and given as

(3a)

(3b)

(3c)

where parameters , , and represent the permittivity, per-
meability, and conductivity of the material, respectively. Pa-
rameters and denote the spatial grid size and time-step
size. Coefficients for different stencil sizes and various
biorthogonal bases may be found in [11].

Field coefficient updating (1) are valid for a homogeneous
medium. Theoretically, one may handle the material hetero-
geneity in a rigorous way by introducing “heterogeneity ma-
trices” in the update equations [6], [7]. However, this would sig-
nificantly complicate the implementation of the algorithm, es-
pecially if the stencil size is large. In the case of the CDF scaling
functions, the nondiagonal elements of these matrices are very
small and can be neglected, thus, the material electrical proper-
ties can be sampled point-wise, similar to the FDTD algorithm.
The CDF family also meets many of the requirements of an ef-
ficient MRTD scheme: maximum number of wavelet-function
vanishing moments for a given support, good regularity for the
dual wavelet functions, and symmetry.

Previous results in [14] have shown that bi-MRTD demon-
strates better numerical dispersion properties relative to the con-
ventional FDTD method. For the examples in [16], the spatial
sampling rate may be reduced by a factor of two while ob-
taining the same level of accuracy, resulting in substantial sav-
ings in both RAM and CPU time. The computational savings
afforded by bi-MRTD are function of the target’s electrical size
since this dictates the numerical-dispersion properties; the sav-
ings vis-à-vis FDTD increase as the target size increases.

However, for PEC targets, a more accurate description of the
target boundaries is required. A simple locally homogeneous
representation is no longer enough to attain good numerical
results. A typical numerical result is shown in Fig. 1, where
the far-field scattered signal from a PEC sphere is compared in

(a)

(b)

Fig. 1. Far-zone fields of a PEC and dielectric sphere by using bi-MRTD
directly without any modification. The radius of the sphere is 0.375 m for
both cases, and the incident wave is a fourth-order Rayleigh pulse with central
frequency of 400 MHz. (a) PEC sphere (spatial sampling rate is approximately
20 points per wavelength at the highest frequency). (b) Dielectric sphere with
relative permittivity of 4.0 (spatial sampling rate is approximately ten points
per wavelength at the highest frequency).

Fig. 1(a) with the Mie-series solution. The radius of the sphere
is 0.375 m, and the incident wave is a transient fourth-order
Rayleigh pulse [18] with central frequency at 400 MHz. The
spatial sampling rate is approximately 20 points per wavelength
at the highest frequency. The agreement between the two
results is good for the first response; this signal due to specular
reflection off the front face of the target. However, we also
see that the difference between the two results is large for the
second transient response, and many spurious ripples exist at
late times. In these results, we set to zero those scaling-function
coefficients associated with electric-field components that are
tangential to the target interface. For comparison, we also
present the computed far field of a same-sized dielectric sphere
in Fig. 1(b). All the geometrical parameters are the same as
for the PEC case, although the spatial sampling rate is actually
approximately ten points per wavelength inside the medium
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at the highest frequency since the relative permittivity of the
medium employed here is . Excellent agreement is
observed between the numerical and analytic solutions, as
in previous bi-MRTD implementations for dielectric targets
[14]–[16]. The challenge addressed in this paper involves ex-
tending the bi-MRTD to PEC targets, with the goal of achieving
comparable accuracy as achieved for dielectric targets.

III. NEW VIEW OF THE bi-MRTD METHOD AND A

MULTIREGION SCHEME

A. Multiregion bi-MRTD Formalism

Without loss of generality, and as an example, we rewrite (1a)
as

(4)

where coefficients , , and are defined as follows:

(5a)

(5b)

(5c)

The coefficients must satisfy the following requirement for
the numerical result to converge to the exact solution as the spa-
tial grid size approaches zero [14]:

(6)

Thus, (4) may be broken into different sub-equations

(7a)

(7b)

Fig. 2. CDF (2; 2) bi-MRTD algorithm viewed as a linear combination of
three conventional FDTD methods.

(7c)

One may observe that the bi-MRTD algorithm is actually a
linear combination of conventional FDTD ones with spatial
grid sizes equal to , , and . Fig. 2
shows that the CDF bi-MRTD (stencil size of three) may
be viewed as a linear combination of three conventional FDTD
algorithms. Three blackened rectangles in Fig. 2 represent three
integral contours corresponding to three different conventional
FDTD schemes with grid sizes of , , and . It is
important to note that an analogous decomposition may be
effected for MRTD with orthonormal Daubechies wavelets
[11] and for Battle–Lemarie wavelets [4], [5]. Therefore,
this development should be of general interest to the MRTD
community.

The three coefficients , , and for the CDF
basis are 1.2291667, 0.0937500, and 0.0104167. Therefore,
the contribution of all 12 magnetic fields around the electric
field is weighted by one of these coefficients according to its
distance to the electric-field point. The closer the distance is,
the more contribution it will generate.

This relationship between the bi-MRTD and conventional
FDTD is important for algorithm implementation. We demon-
strate next how it may be used to address bi-MRTD analysis of
PEC targets.

B. Multiregion Scheme for the PEC Targets

The FDTD analysis of scattering from arbitrary shaped
PEC targets has proven to be a challenge. Many conformal
techniques have been developed in the last several years. Many
of them use curvilinear coordinates or nonorthogonal grids
[19]–[23] in order to perfectly describe the target boundaries.
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Fig. 3. Schematic drawing of a partially filled FDTD cell.

However, curvilinear coordinates cannot be easily extended
for arbitrary shaped structures, and the nonorthogonal FDTD
usually requires much longer CPU time due to the complexity
of the algorithm. This vitiates the simplicity and efficiency
of the conventional FDTD, two of its most important char-
acteristics. Therefore, more recent algorithms are based on a
locally conformal technique [24]–[32]. A major advantage of
this approach is that only local cells around the boundaries of
the targets need be specially treated. Both dielectric and PEC
targets may be handled in similar ways.

Generally, the locally conformal techniques are based on the
integral form of the Maxwell’s equations. We will employ the
scheme proposed in [28]. Consider a cell partially filled by a
PEC, as shown in Fig. 3, the magnetic field inside the cell
is updated slightly differently compared with the conventional
FDTD algorithm. The corresponding update equation reads

(8)

where is the area of the whole cell, , , , and are the
lengths of the non-PEC part of the four edges. Update equa-
tions for the other magnetic fields may be deduced in a similar
manner. If or , then the electric field
on the corresponding edge should be borrowed from the neigh-
boring edges. An efficient linear interpolation [31] may be em-
ployed for simplicity.

As discussed before, the bi-MRTD method cannot be applied
to the PEC directly by simply setting to zero the samples of the
electric-field components tangential to the boundary. To deal
with this problem, we define subregions around the PEC tar-
gets. The aforementioned locally conformal FDTD may be ap-
plied inside the subregions, using the FDTD-like representation
in (7). The key innovation here is that the FDTD-based decom-
position in (7) allows us to exploit previous developments in
FDTD analysis of PEC targets. The conventional bi-MRTD al-
gorithm is used in the rest of the computational domain. It is
noted that the fields are consistent in or outside the sub-domains
and, hence, there are no numerical instabilities.

C. Implementation of the Connecting Surface

In general, the MRTD basis-function coefficients do not
represent the field components at the corresponding position
of the MRTD grid. To obtain the field component at a specific
point, we must weigh the basis-function coefficients by the
appropriate basis functions. That is, the field at a given point is
determined by several neighboring basis-function coefficients.
Consequently, the implementation of the MRTD connecting
surface should be more complicated than that for the conven-
tional FDTD method [15] (because the extended MRTD basis
functions yield less spatial localization vis-à-vis the FDTD). To
make the update equations consistent through the boundary of
the connecting surface, appropriate incident field components
should be compensated for in the region around the connecting
surface with support dictated by the stencil size [15]. This
requires much RAM to store the corresponding incident field
components, especially for a large stencil size.

However, the interpolating property of the CDF scaling func-
tions [33] simplifies this procedure. In particular, we can prove
that, if the fields are represented in the scaling-function space
alone (no further wavelet levels are considered in the expan-
sion), then the field sample at one given grid point equals the
scaling coefficient corresponding to that point. To demonstrate
this, consider the following representation of the continuous
component (only spatial dimensions are considered here):

(9)

To obtain the value of this field component at the point of
coordinates ( , , ) corresponding to grid point ( , , ),
we sample the expression above with a three-dimensional delta
pulse centered at that point as follows:

(10)

Now we make use of the interpolating property of the CDF
dual scaling functions, which states that ( and being any
integers)

(11)

It is easy to see that we obtain the result mentioned above, i.e.,
. The practical implication on the

bi-MRTD implementation is that we can always make a direct
conversion from field samples to scaling expansion coefficients
and vice-versa. Regarding the incident field implementation,
only one layer of scaling coefficients around the connecting sur-
face is required for compensation of the incident fields [1]. The
RAM used to store the incident waves can be reduced to
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(a)

(b)

Fig. 4. Comparison of the two different implementations of the connecting
surface. No target is placed inside the computational domain. The incident wave
and sampling rate are the same as those in Fig. 1. The incident angles are� = 0

and � = 45 . (a) Comparison of the E -field component, computed using a
single and multilayer connecting surface. (b) Difference between the results in
(a).

of that of a general MRTD scheme. It is also interesting to no-
tice that a similar argument can be employed when storing the
equivalent currents on the Huygens surface for the far-zone field
calculation: only one layer of scaling coefficients needs to be
taken into the calculation on each side of the surface since they
represent the field samples at those locations.

The validity of the new implementation is shown in Fig. 4,
where the field at a point inside the connecting surface is pre-
sented. The incident wave is a fourth-order Rayleigh pulse, and
no scatterer is placed inside the computational domain. The
pulse shape should be the same as that of the incident wave.
The parameters of the incident wave and sampling rate are the
same as those in Fig. 1. The incident angles are and

. From Fig. 4, we observe that the fields obtained by
the two schemes (old connecting-surface implementation [15],
[16] and that presented above) agree with each other very well.

(a)

(b)

Fig. 5. Computed far field of a PEC sphere by using the multiregion bi-MRTD
scheme and the FDTD. The radius of the PEC sphere is 0.5 m, and the incident
wave is a fourth-order Rayleigh pulse with central frequency of 400 MHz. The
spatial sampling rate is approximately 15 points per wavelength at the highest
frequency. (a) Bi-MRTD result compared with the Mie solution. (b) FDTD result
compared with the Mie solution.

IV. NUMERICAL RESULTS

A. Far Field of a PEC Sphere

We first consider a PEC sphere in free space. The choose a
PEC-sphere target because: 1) the sphere is a three-dimensional
smooth target that allows examination of the conformal MRTD
discussed in Section III-C and 2) the results may be compared
to a reference Mie-series solution.

For this numerical example, the sphere radius is 0.5 m, and the
incident field is a transient plane wave with the amplitude gov-
erned by a fourth-order Rayleigh pulse. The central frequency
of the pulse is 400 MHz. The spatial sampling rate is approx-
imately 15 points per wavelength at the highest frequency. As
indicated in Section III-C, the locally conformal FDTD method
is applied to a subregion in which the PEC sphere resides, and
the conventional bi-MRTD algorithm is utilized in the rest of
the computational domain.
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(a) (b)

(c) (d)

Fig. 6. Far-field scattered field from two spheres (one is a PEC, and the other is a dielectric) by using the multiregion bi-MRTD scheme. The radius of the two
spheres is 0.375 m, and the distance between the two centers is 1.125 m. The relative permittivity of the dielectric is 4.0. The incident wave is a fourth-order
Rayleigh pulse with a central frequency of 800 MHz, and the incident angles are � = 0 and � = 45 . For bi-MRTD, the spatial sampling rate is 30 points per
wavelength (ppw) at the central frequency (5 ppw at the highest frequency). For FDTD, 30 and 60 ppw are used at the central frequency. The FDTD solution with
60 ppw is used as the reference. (a) VV polarization, bi-MRTD 30. (b) VV polarization, FDTD 30. (c) HH polarization, bi-MRTD 30. (d) HH polarization, FDTD
30.

The far field of the PEC sphere is shown in Fig. 5. The three
curves represent: 1) the results of an analytical Mie-series so-
lution; 2) conventional FDTD with a staircase approximation
to the sphere surface; and 3) the multiregion bi-MRTD method.
We observe that the bi-MRTD-generated ripples in the late-time
response in Fig. 1 are now absent, and the numerical results of
the multiregion bi-MRTD algorithm agree with the analytical
solution well. Small differences exist for the staircase FDTD
solution, with these removed if an analogous conformal FDTD
solution is applied.

In this example, the perfectly matched layer (PML) [1], [2]
absorber is placed just a few cells away from the PEC sphere,
and the creeping wave attenuates to zero quickly after the initial
specular reflection. The advantages of the bi-MRTD solution are
more evident for problems in which the time-domain signal is
of more-extended support, such problems offering greater op-
portunities for numerical dispersion. In the following examples,
we consider multiple targets, for which inter-target interactions

yield a more-complicated scattered signal (longer temporal sup-
port).

B. Far Field of Two Spheres

We consider two spheres, one a PEC and the other a dielectric
with . The radius of both the PEC and dielectric spheres
is 0.375 m. The center of each sphere is placed along the -axis,
and the distance between the two sphere centers is 1.125 m. The
incident angles are and . Backscattered far
fields for both VV and HH polarization are shown in Fig. 6.
The central frequency of the fourth-order Rayleigh pulse [18]
is 800 MHz. For the multiregion bi-MRTD scheme, the spatial
sampling rate is approximately five points per wavelength inside
the dielectric sphere at the highest frequency.

Three curves are presented in Fig. 6. Besides the result of the
multiregion bi-MRTD scheme, the other two curves are the nu-
merical results of two conventional FDTD schemes with sam-
pling rates of five and ten points per wavelength inside the di-
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electric sphere at the highest frequency. There is no analytical
result for this example case, thus, the finely sample conven-
tional-FDTD results provide a reference (running the FDTD re-
sults with a higher sampling rate yielded results comparable to
the ten-points-per-wavelength data mentioned above).

From Fig. 6, we observe that the agreement between the mul-
tiregion bi-MRTD scheme and the finer grid FDTD method is
generally good, while the numerical dispersion is evident in the
FDTD results with the same sampling rate as that of the multi-
region bi-MRTD.

C. Tilted Infinitesimally Thin PEC Plate

As a final example, we consider the bistatic radar cross sec-
tion (RCS) for scattering from an infinitesimally thin PEC sheet.
Computations are performed in the time domain, and results
are shown (after Fourier transform) for the case in which the
electrical length of the square sheet is one wavelength on a side
(this corresponds to an actual frequency, in the computations, of
1.6 GHz). Reference results are computed via the FDTD sam-
pled at 40 cells per wavelength. In these reference computations,
the PEC sheet lies in the ( , ) plane of a Cartesian coordinate
system such that there is no need in this case for a conformal
formulation. The angle of incidence is and .
To examine the accuracy of the conformal formulation, we now
tilt the PEC sheet at a 45 angle in the same Cartesian coordi-
nate system, and adjust the angle of incidence accordingly. Ide-
ally, the results from the reference FDTD computation should
be identical to those generated for the tilted PEC sheet.

For the tilted-sheet results, we consider a spatial sample rate
of 20 cells per wavelength at the frequency of interest, and
two sets of results are considered. In one, we use a traditional
FDTD formulation with a staircase (stepwise) approximation
to the surface of the PEC sheet; in the second set of results,
we employ the conformal MRTD solution developed here. The
bi-static RCS is presented in Fig. 7. As indicated in Fig. 7, the
conformal results are generally considerably closer to the refer-
ence solution than the staircase FDTD solution. When the stair-
case approximation is applied at a sample rate of 40 cells per
wavelength, the level agreement is comparable to that of the
conformal MRTD solution. These results underscore the prin-
cipal utility of a conformal solution: it allows one to sample
space at a coarser spatial sampling rate, reducing computational
costs, while still yielding accurate results.

D. Numerical Stability

When one modifies the original FDTD or MRTD frame-
work to incorporate a conformal mesh, the original stability
conditions in these algorithms may be undermined. It has
been demonstrated by Craddock et al. [34] that the conformal
approach considered here, originally developed in [28], has
the potential of becoming unstable. In [34], methodologies are
presented to mitigate this problem. It is our experience, based
on the results presented here, and on numerous other examples,
that the algorithm has displayed no problems with numerical
instability. This is not to say it can never become unstable, but
we have not observed any such problems in our studies based

Fig. 7. Bistatic RCS from a tilted PEC sheet. The reference FDTD results
sampled at 40 cells per wavelength correspond to the plate positioned in the
(x, y) plane, and the results for sampling at 20 cells per wavelength correspond
to the plate tilted 45 . The results for the tilted plate are presented here with
the angle of observation converted to the corresponding angle for the flat plate,
allowing a direct comparison. The electric field is polarized in the � direction.

on an extensive set of numerical experiments. However, this
is a topic worthy of further study, with an even wider range of
problems, and potentially the conformal formulation presented
here may be modified as in [34].

V. CONCLUSIONS

Although the bi-MRTD algorithm yields better numerical dis-
persion properties relative to the conventional FDTD method,
it cannot be directly applied to the case of PEC targets. This
is because the field components in bi-MRTD are defined over
an extended spatial grid, mitigating implementation of local-
ized PEC boundary conditions. The key development of this
paper is that, with a reorganization of the bi-MRTD update equa-
tions, this algorithm may be viewed as a linear combination of
several conventional FDTD sets of equations. The number of
conventional FDTD equation is equal to the stencil size of the
bi-MRTD coefficients. The most important interpretation of the
linear combination is that the field coefficients obtained through
the bi-MRTD update equations do represent the field compo-
nents at corresponding points in space. On the basis of this ob-
servation, a multiregion bi-MRTD scheme has been proposed to
deal with scattering from PEC targets, i.e., the conventional con-
formal FDTD algorithm is used inside all the subregions where
the PEC targets reside, and the bi-MRTD algorithm is employed
in the rest of the computational domain. Numerical examples
show that the multiregion bi-MRTD scheme is a successful tool
for dealing with PEC targets.

The implementation of the connecting surface and the cal-
culation of the equivalent currents on the Huygens’ surface may
also be simplified. In particular, the associated field components
need only be stored on a single layer (as opposed to over the
multiple layers of the MRTD stencil), yielding significant RAM
savings.
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